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SUMMARY 

A formulation is developed to impose pressure-prescribed boundary conditions in the penalty finite element 
method. Some numerical experiments for the Poiseuille flow problem are performed to compare it with 
the conventional traction-prescribed boundary condition. Also the incorrectness of the traction-free outlet 
boundary condition for contained flows is studied with explanatory numerical examples. Discussion is 
focused on the inlet and outlet boundary conditions to simulate fully developed flows. Finally, the 
three-dimensional flow in a bifurcated pipe is analysed with the proposed formulation. 
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INTRODUCTION 

Since pressure is a physically measurable quantity, we sometimes encounter problems where 
only the pressure difference between the inlet and outlet is known in fully developed flows. Our 
aim in this paper is to compute the fully developed flow in a three-dimensional bifurcated pipe 
where only pressure differences are known a priori. The question is what kind of boundary 
condition is appropriate for this problem. For two-dimensional fully developed, contained flow, 
the common boundary condition used in the finite element method is the imposition of a parabolic 
velocity profile at the inlet and a traction-free condition at the outlet. However, the flow rate 
of the influx is unknown in general, because the local pressure gradient at the inlet depends on 
the configuration of the pipe, which may contain an orifice or an obstacle in it or may be 
bifurcated. Furthermore, even the inlet velocity profile cannot be assumed in the three-dimensional 
flows, owing to the arbitrary cross-sectional shape of the pipe. Therefore, specification of the 
velocity profile at the inlet is impractical for our case. 

As for the outlet boundary, the traction-free condition has commonly been used by most finite 
element practitioners, but it is incorrect since the value of traction is non-zero even for fully 
developed flow, and unknown in general. Instead of imposition of velocity or traction, it seems 
very natural to specify pressure values at inlet and outlet because pressure is constant on the 
plane normal to the local streamline in fully developed flows, although care should be taken so 
as not to violate mass conservation.' If one uses the mixed method2 of velocity and pressure, 
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the pressure-prescribed boundary conditions can be specified as the essential boundary condition 
of pressure. In the penalty finite element on the other hand, it is impossible 
to impose pressure values as an essential boundary condition, since pressure does not appear 
explicitly as a variable in practical computations. 

In the present paper, we propose a new formulation in which the pressure-prescribed boundary 
condition can be incorporated as the natural boundary condition in the penalty finite element 
formulation. To demonstrate the formulation, it is applied to the Poiseuille flow problem, where 
incorrectness of traction free outlet boundary condition is also shown numerically. Finally, the 
three-dimensional flow in a bifurcated pipe is analysed with the proposed formulation. 

THEORY 

Basic equations 

The basic equations for the steady incompressible and viscous fluid flow are written as follows: 

u . . = o  1.1 , (1) 
1 1 

U.U. .+-p.--z.. 
1J.j = 0, 

P " P 

where the usual Einstein summation convention is used and the subscripts i a n d j  run from 1 
to 3. The variables ui, p, zij  and p imply the ith component of velocity, pressure, deviatoric stress 
and density, respectively. 

The following equation is given formally if the constraint condition (1) is satisfied by the 
penalty function 

(3) 
where 1 is called the penalty parameter and a large positive number, say lo7, is selected for it 
in an actual computation. 

p = - nui,i(n + a), 

The deviatoric stress zij for a Newtonian fluid is given as follows: 

zij = V(ui,j + uj,i), 

where v is the viscosity of the fluid. 
(4) 

Boundary conditions 

equations (1) and (2). 
The following two types of boundary conditions are considered in this study to supplement 

Type I .  
u. = u. 

I * I ?  on r,, 
ti = ti, on rt, 

where ( A ) denotes the prescribed value, and the traction ti is defined as follows: 

ti = - pni + ~ ( u i , j  + uj,i)nj, (7) 

where n, is the ith component of the normal unit vector on the boundary. 
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Type  2. 

The velocity is imposed as the essential boundary condition, whereas, the traction and pressure 
are imposed as the natural boundary conditions. We assume that the essential and natural 
boundary conditions cover the whole boundary and do not overlap each other. 

Here special care should be taken to impose the pressure value, because imposition of pressure 
could violate mass conservation’ and specification of pressure alone is insufficient, since 
specification of three boundary conditions is required in three-dimensional problems. The pressure 
is, however, the most relevant variable in simulating the fully developed flows. If one considers 
the fully developed flow in an infinite straight pipe parallel to the z-direction, the Navier-Stokes 
equations and incompressibility constraint are reduced to the following equations: 

aw -=O, aZ 
where w is the velocity component in the z-direction. These equations require that the pressure 
should be constant in any plane normal to the pipe. Therefore, the following three restrictions 
are imposed on the pressure-prescribed boundaries to comply with the fully developed flow 
conditions. 

(i) The boundary surface rp should be flat and normal to the longitudinal direction of the pipe. 
(ii) The pressure value should be constant on the pressure-prescribed boundary on rp. 
(iii) The pipe should be straight and long enough to realize the fully developed flow. 

Although there is ambiguity in the above restrictions, we expect that these restrictions would 
be sufficient to specify the pressure values consistently. At least, these restrictions are necessary 
conditions for fully developed flows. 

Weak formulations 

the boundary conditions mentioned above. 
In this section, two types of weak formulation are given, corresponding to the two types of 

T y p e  1 .  Substituting equation (4) into equation (2), a weak form of equation (2) is derived by 
the weighted residual method as follows: 

where R denotes the whole domain and wk is a weighting function which is assumed to be zero 
on the velocity-prescribed boundary Tv. Applying the Green-Gauss theorem to the second and 
the third terms of equation (13), we obtain the following equations: 
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Substitution of equation (6) into the right-hand side integral of equation (14) leads to the 
following equation: 

Here we employed the condition: wk = 0 on Tv. Equation (15) implies that the traction ti can 
be introduced as a natural boundary condition. 

Type 2. In order to introduce the pressure-prescribed boundary condition into equation (14), 
the deviatoric stress term in the right-hand side of equation (14) is transferred to the left-hand 
side of the equation as follows: 

where the condition: wk = 0 on ry is employed. Equation (16) shows that one may prescribe the 
pressure value on the boundary rp as a natural boundary condition. 

It should be noted that equation(16) contains both volume and surface integrals on the 
left-hand side, whereas the conventional formulation (15) contains only a volume integral. 
Although we are unprepared to state the mathematical property regarding formulation (16), we 
suppose that the solution exists under physically reasonable conditions. Our belief rests on the 
fact that a similar formulation has often been used in heat conduction analyses with radiation 
or heat transfer boundary conditions. The weak form of the steady heat conduction equation 
is written as follows: 

xJQT:TidQ= - .lr T*qdT, (17) 

where K is the heat conductivity and T, T* and q stand for temperature, weighting function and 
heat flux, respectively. If the boundary r is the heat transfer boundary, the heat flux 4 is replaced 
by the following relation: 

4 = h(T - T,), (18) 
where h is the heat transfer coefficient and T,  the bulk temperature. Then, one must solve the 
following equation with an unknown natural boundary condition of heat flux: 

Although the existence of the solution is still an open question to our knowledge, this 

In the following, we consider the extension of equation (16) to another type of formulation 
formulation is used in many engineering applications. 
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which is derived in the same way. As mentioned in the Introduction, the traction values are 
non-zero at the outlet even for fully developed flows, and are unknown in general. Taylor et 
al." have proposed an iterative procedure for the evaluation and imposition of non-zero tractions 
on boundaries where advection is appreciable. The iterative solutions for ui and p ,  if converged, 
would satisfy the following equation: 

, r  r 

+ !- J wkpni dT - v wk(#i,j + u j , i ) n j d ~  = 0, 
P rr J rt 

where ui and p in both volume and surface integrals are considered as unknowns. Taylor et ~ 1 . ' ~  
have obtained successful results and explained the physical meaning of such a boundary condition 
by the statement that 'no disturbances are propagated in an upstream direction from the 
downstream boundary'. Therefore, we expect that the formulation (20) would be applicable to 
the problems of advection-dominant flows and buoyancy-influenced flows,ll although the 
formulation (20) is not the main subject of this paper. 

Finite element formulations 

as follows: 
The velocity ui and the weighting function wk are discretized in the usual finite element manner 

ui = uaima, 

wk = Wak@a 

where ma is the trilinear interpolation function with respect to node a, and uai and wak stand for 
the values of ui and wk at node a, respectively. The pressure p and weighting function p* for 
equation (3) are approximated by the piecewise constant function Ya as follows: 

P = Pa"a9 (23) 

p* = p , * Y a .  (24) 
Since the discretized pressures can be eliminated from equations (1  5) and (16), the following 

matrix equations are obtained finally. 

Type 1 .  

where 
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Tai = J d r ,  
P rt 

It should be noted that equation (26) contains the matrix of surface integrals which results 
from the deviatoric stress on the boundary rp' The velocities uai are obtained by the 
Newton-Raphson procedure, since the equations are non-linear with respect to uai, which is 
due to the convective term of the Navier-Stokes equation. The algebraic equations linearized 
in the Newton-Raphson procedure are solved by means of the wave front method', to save 
the primary memory of the computer. 

NUMERICAL RESULTS 

Poiseuille flows 

In order to compare the type 1 and 2 formulations, a simple fully developed flow, that is the 
Poiseuille flow problem, is considered in this section. Here, the discussion and computation are 
restricted to the two-dimensional spatial domain, although the computations are executed by 
the three-dimensional code. As is well known, the exact velocity components of the Poiseuille 
flow are given as follows: 

u, = --- dp (2by - y z ) ,  
21 dx (33) 

u* = 0, (34) 
where b denotes the half-width between two parallel walls and -dp/dx the constant pressure 
gradient. Assuming that the pressure is unity at the inlet and zero at the outlet, the exact values 
of the tractions ti(i = 1,2) at the inlet and outlet are calculated as follows, using the definition 
of the traction (7) and the exact solutions (33) and (34): 

(35) dP t ,  = 1 ,  t ,  = - (b  - y ) ,  at the inlet, dx 

dP 
t ,  = 0, t ,  = - - ( b  - y) ,  at the outlet. dx 

Here, as shown from equation (36), it is worthy of note that the exact value of the traction is 
not zero at the outlet, although many analysts are using a traction-free outlet boundary condition. 
From equation(35) or (36), one could see that the tractions t ,  approach zero if the pressure 
gradient - dp/dx approaches zero. However, according to equation (33), the velocity remains 
unchanged if the viscosity 1 is as small as the pressure gradient. Therefore, the traction-free 
outlet boundary condition appears to be correct only for large Reynolds number problems of 
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t,= 0 

t,= 0 

tT 1 

t,= 0 

I X  

Figure 1. Inconsistent traction boundary conditions (type 1 formulation) 

M M 

Figure 2. Numerical solutions of inconsistent traction boundary conditions (type 1 formulation): (a) velocity distribution; 
(b) pressure distribution 

small viscous effect. This phenomenon is discussed by Leone and Gresho.13 To study the effect 
of the traction-free outlet boundary condition, the flow is analysed here using the boundary 
conditions as shown in Figure 1. The traction t ,  at both inlet and outlet is assumed to be zero. 
The computational domain is divided into 4 x 5 x 1 brick ekments in the x-, y- and z-directions, 
respectively. The material and geometrical constants are given as follows: 

I]= 1, b = L =  1, (37) 
where L is the length between the inlet and the outlet. If one takes maximum velocity in the 
domain as the representative velocity and 2b as the representative length, the Reynolds number 
is estimated to be unity for the analytical solution of the Poiseuille flow. Figures 2(a) and 2(b) 
show, respectively, the velocity and pressure distributions. Both are far from the analytical 
solution, as expected. The easiest way to remedy the solution is to impose the zero cross-stream 
velocity, that is u2 = 0 at the inlet and outlet. However, it needs more complicated programming 
to impose such a condition, particularly on inclined boundaries, and this boundary condition 
may cause numerical oscillations in some cases,14 whereas the type 1 formulation is still useful 
if the consistent tractions according to the equations (35) and (36) are used. 

Next, we apply the type 2 formulation to the Poiseuille flow problem. The boundary conditions 
are depicted in Figure 3. The material and geometrical constants and mesh subdivisions are the 



Figure 3. Boundary conditions for the Poiseuille flow problem (type 2 formulation) 
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Figure 4. Numerical solutions of the Poiseuille flow (type 2 formulation): (a) velocity distribution; (b) pressure distribution 

EXACT SOLUTION -_____ 

__PRESENT SOLUTION 

Figure 5. Comparison of analytical and numerical solutions for pressure 

same as the former ones. Figures 4(a) and 4(b) show velocity and pressure distributions, 
respectively, both of which exactly agree with the analytical solution. The reason why the intervals 
between two neighbouring pressure contour lines are unequal in Figure 4(b) is the smoothing 
procedure through which the pressure value obtained by equation (3) for each element is 
redistributed to each node for plotting purposes using the least-squares method. The original 
pressure before the smoothing procedure is given in comparison with the exact solution and the 
smoothed pressure in Figure 5,  which shows the good agreement between the original pressure 
and the exact one. 
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From the above numerical experiments, it turns out that the type 2 formulation is quite 
straightforward to specify the inlet and outlet boundary conditions, whereas the type 1 formulation 
needs to evaluate a non-zero traction value a priori which is impractical in general, especially 
for three-dimensional problems. 

Three-dimensional flow in a bijiurcated pipe 

A bifurcated pipe is one of the most important components in chemical, nuclear and other 
plants. Here, the flow around the junction of the bifurcated pipe is analysed, as shown in Figure 6. 
In this problem, the flow is driven by the pressure differences between the inlets and the outlet 
and is assumed fully developed near the inlets and outlet. It is hardly possible to calculate the 
analytical velocity distributions at the inlets or outlet because the flow rates through the inlets 
or outlet are unknown owing to the bifurcation of the pipe even though the velocity profiles 
can be determined for such simple cross-sections. Therefore, the traction values at the inlets and 
outlet cannot be estimated a priori. The alternative way to impose the traction values is the use 
of the iterative procedure proposed by Taylor et al." Such an iteration method, however, requires 
additional computational efforts, even if it is very effective for advection-dominant problems. 

On the other hand, the application of pressure-prescribed boundary conditions to this problem 
is very straightforward. Here, the boundary conditions are imposed as follows: 

ul= u2 = uj = 0, 

u2 =o, 
p =  1, 

P = 0, 

on the pipe wall, 

on the symmetry plane, 

at inlets A and B, 

at the outlet. 

(38) 

The finite element mesh subdivisions consist of 648 elements and 996 nodal points for the 
half portion of the flow because of the symmetry condition (see Figure 7). The material constants, 
such as viscosity and density of the fluid are assumed to be unity in this case. The computed 
velocity and pressure on the symmetry plane are shown in Figures 8(a) and (b), respectively. 
These results seem to be reasonable and indicate the validity of the Type 2 formulation. 

Y 

X 

/ 

Figure 6. Problem description of the flow in a bifurcated pipe 
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Figure 7. Finite element subdivisions of the bifurcated pipe 

Figure 8. Numerical solutions on the symmetry plane (type 2 formulation): (a) velocity distribution; (b) pressure 
distribution 

(a) (b) 

Figure 9. Numerical solutions by traction-free outlet and analogous inlet boundary conditions (type 1 formulation): 
(a) velocity distribution; (b) pressure distribution 

We also demonstrate the incorrectness of the traction free outlet boundary condition, using 
the Type 1 formulation with the following boundary conditions: 

u; = u2 = u3 = 0, on the pipe wall, 

u2 = 0, 
t ,  = t ,  = 0, 

t ,  = 1, t ,  = t ,  =0, at inlet B, 

t ,  = t ,  = t ,  = 0, at the outlet, 

t ,  = t ,  = 0, on the symmetry plane, 

t ,  = - 1 ,  at inlet A, (39) 
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where the inlet traction values are given by analogy with the outlet traction values. The 
computational results for velocity and pressure are shown in Figures 9(a) and 9(b), respectively. 
Figure 9(a) shows converging velocity profiles at the inlets and a diverging one at the outlet, 
accompanied by the distorted pressure contours of Figure 9(b). These solutions indicate that the 
traction-free outlet boundary condition and an analogous inlet boundary condition seem to be 
practically incorrect, even though such boundary conditions are prevalent in the finite element 
flow analyses. 

CONCLUSION 

Our numerical results have demonstrated that the traction-free outlet boundary condition which 
many finite element practitioners are using is incorrect even for fully developed flows. In our 
formulation, on the other hand, the surface integral of the deviatoric stress, which causes non-zero 
traction values at the boundaries, is treated as unknown and is solved together with the volume 
integrals. This formulation makes it easy to specify boundary conditions for fully developed 
flows by imposing pressure values. The numerical results of the two-dimensional Poiseuille flow 
and the three-dimensional flow in a bifurcated pipe support the validity of the proposed 
formulation. 

The application of the Type 2 formulation is limited to the fully developed flows in this study. 
However, we have also suggested another type of formulation which is derived in the same 
manner as the Type 2 formulation. Although the numerical verifications have not been performed 
yet, we expect that the formulation (20) would be effective for advection-appreciable flows as 
well as buoyancy-influenced flows. 

ACKNOWLEDGEMENTS 

Discussions with Dr. L. Fuchs of the Royal Institute of Technology, Sweden, are gratefully 
acknowledged. The authors also wish to thank Mr. H. Okuda of University of Tokyo for his 
assistance in the preparation of this paper. 

REFERENCES 

1. P. M. Gresho, R. L. Lee and R. L. Sani, ‘On the time-dependent solution of the incompressible Navier-Stokes 
equations in two and three dimensions’, in C. Taylor and K. Morgan (eds), Recent Advances in Numerical Method in 
Fluids Vol. f , Pineridge Press, 1980, pp. 27-79. 

2. C. Taylor and P. Hood, ‘A numerical solution of the Navier-Stokes equations using FEM technique’, Computers and 
Fluids, 1, 73-100 (1973). 

3. M. Bercovier and M. Engelman, ‘A finite element for the numerical solution of viscous incompressible flows’, J .  Cornp. 

4. J. C .  Heinrich and R. S. Marshal1,‘Viscous incompressible flow by a penalty function finite element method’, Computers 

5 .  J. T. Oden, ‘RIP-methods for Stokesian flows’, in R. H. Gallagher, D. N. Norrie, J. T. Oden and 0. C. Zienkiewicz 

6. J. N. Reddy, ‘On penalty function methods in the finite element analysis of flow problems’, In t .  j. numer. methods fluids, 

7. J. N. Reddy, ‘Penalty-finite-element analysis of 3-D Navier-Stokes equation’, Compt. Meth. Appl. Mech. Eng., 3 5 8 7 -  

8.  T. J. R. Hughes, W. K. Lui and A. Brooks, ‘Finite element analysis of incompressible viscous flows by the penalty 

9. D. S. Malkus and T. J. R. Hughes, ‘Mixed finite element methods-reduced and selective integration technique: a 

10. C. Taylor, J. Rance and J. 0. Medwell, ‘A note of the imposition of traction boundary conditions when using the FEM 

Phys., 30, 181-201 (1979). 

and Fluids, 9, 73-83 (1981). 

(eds), Finite Elements in Fluids Vol. 4 ,  Wiley, Chichester, 1982, 305-318. 

2, 152-171 (1982). 

106 (1982). 

function formulation’, J .  Comp. Phys., 30, 1-60 (1979). 

unification of concept’, Cornp. Meth. Appl. Mech. Eng., 15, 63-81 (1978). 

for solving incompressible flow problems’, Comm. Appl. Nurner. Meth., 1, 113-121 (1985). 



532 G. YAGAWA AND Y. EGUCHI 

1 1 .  J. M. Leone, Jr., P. M. Gresho, R. L. Lee and R. L. Sani, ‘Flow-through boundary conditions for time-dependent, 
buoyancy-influenced flow simulations using low order finite elements’, in C. Taylor, J. A. Johnson and W. R. Smith 
(eds), Proc. of 3rd lnt .  Conf. on Numer. Meth. in Laminar and Turbulent Flow, Seattle, U.S.A., Pineridge Press, 
1983, pp. 3-13. 

12. P. Hood, ‘Frontal solution program for unsymmetric matrices’, Int .  j .  numer. methods eng., 10, 379-399 (1976). 
13. J. M. Leone, Jr. and P. M. Gresho, ‘Finite element simulations of steady, two-dimensional viscous incompressible flow 

14. P. M. Gresho and R. L. Lee, ‘Don’t suppress the wiggles-they’re telling you something!’, Computers and Fluids, 9, 
over a step’, J. Cornp. Phys., 41, 167-191 (1981). 

223-253 (1981). 




